Multi-stage India-Asia collision: Paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya

Author:

Jadoon Umar Farooq1,Huang Baochun1,Shah Syed Anjum2,Rahim Yasin1,Khan Ahsan Ali3,Bibi Asma4

Affiliation:

1. Key Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. Saif Energy limited, Islamabad 44000, Pakistan

3. Institute of Tibetan Plateau Research and Centre for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100871, China

4. COMSATS University Islamabad, Islamabad 44000, Pakistan

Abstract

The India-Asia collision is the most spectacular, recent, and still active tectonic event of the Earth’s history, leading to the uplift of the Himalayan-Tibetan orogen, which has been explained through several hypothetical models. Still, controversy remains, such as how and when it occurred. Here we report a paleomagnetic study of Cretaceous-Tertiary marine sediments from the Tethyan Himalaya (TH) in the Hazara area, north Pakistan, which aims to constrain timing for the onset of the India-Asia collision and to confirm the validity of already proposed models, particularly in western Himalaya’s perspective. Our results suggest that the TH was located at a paleolatitude of 8.5°S ± 3.8° and 13.1°N ± 3.8° during the interval of ca. 84−79 Ma and 59−56 Ma, respectively. A comparison between paleopoles obtained from the current study and coeval ones of the India Plate indicates that the TH rifted from Greater India before the Late Cretaceous, generating the Tethys Himalaya Basin (THB). Our findings support a model for a multi-stage collision involving at least two major subduction systems. A collision of the TH with the Trans-Tethyan subduction system (TTSS) began first in Late Cretaceous-Early Paleocene times (ca. 65 Ma), followed by a later collision with Asia at 55−52 Ma. The onset of the collision between the TH (plus TTSS) and Asia could not have occurred earlier than 59−56 Ma in the western Himalaya. Subsequently, the India craton collided with the TH, resulting in the diachronous closure of the THB between ca. 50 and ca. 40 Ma from west to east. These findings are consistent with geological and geochemical evidence and have a broad implication for plate reconfigurations, global climate, and biodiversity of collisional processes.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3