Reconstruction, with tunable sparsity levels, of shear wave velocity profiles from surface wave data

Author:

Vignoli Giulio12ORCID,Guillemoteau Julien3,Barreto Jeniffer1,Rossi Matteo4

Affiliation:

1. University of Cagliari, Department of Civil and Environmental Engineering and Architecture, 09123 Cagliari, Italy

2. Geological Survey of Denmark and Greenland, Department of Groundwater and Quaternary Geological Mapping, 8000 Aarhus, Denmark

3. University of Potsdam, Institut für Geowissenschaften, 14469 Potsdam, Germany

4. Lund University, Engineering Geology, SE-22100 Lund, Sweden

Abstract

SUMMARY The analysis of surface wave dispersion curves is a way to infer the vertical distribution of shear wave velocity. The range of applicability is extremely wide: going, for example, from seismological studies to geotechnical characterizations and exploration geophysics. However, the inversion of the dispersion curves is severely ill-posed and only limited efforts have been put in the development of effective regularization strategies. In particular, relatively simple smoothing regularization terms are commonly used, even when this is in contrast with the expected features of the investigated targets. To tackle this problem, stochastic approaches can be utilized, but they are too computationally expensive to be practical, at least, in case of large surveys. Instead, within a deterministic framework, we evaluate the applicability of a regularizer capable of providing reconstructions characterized by tunable levels of sparsity. This adjustable stabilizer is based on the minimum support regularization, applied before on other kinds of geophysical measurements, but never on surface wave data. We demonstrate the effectiveness of this stabilizer on (i) two benchmark—publicly available—data sets at crustal and near-surface scales and (ii) an experimental data set collected on a well-characterized site. In addition, we discuss a possible strategy for the estimation of the depth of investigation. This strategy relies on the integrated sensitivity kernel used for the inversion and calculated for each individual propagation mode. Moreover, we discuss the reliability, and possible caveats, of the direct interpretation of this particular estimation of the depth of investigation, especially in the presence of sharp boundary reconstructions.

Funder

Regione Autonoma della Sardegna

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3