Spreading of Localized Information across an Entire 3D Electrical Resistivity Volume via Constrained EMI Inversion Based on a Realistic Prior Distribution

Author:

Zaru Nicola1,Rossi Matteo2,Vacca Giuseppina1ORCID,Vignoli Giulio13ORCID

Affiliation:

1. Department of Civil and Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy

2. Engineering Geology Division, Lund University, 223 63 Lund, Sweden

3. Near Surface Land and Marine Geology Department, Geological Survey of Denmark and Greenland (GEUS), 8000 Aarhus, Denmark

Abstract

Frequency-domain electromagnetic induction (EMI) methods are commonly used to map vast areas quickly and with minimum logistical efforts. Unfortunately, they are often characterized by a very limited number of frequencies and severe ill-posedness. On the other hand, electrical resistivity tomography (ERT) approaches are usually considered more reliable; for example, they do not require specific calibration procedures and can be easily inverted in 2D/3D. However, ERT surveys are, by far, more demanding and time consuming, allowing for the deployment of a few acquisition lines per day. Ideally, the optimal would be to have the advantages of both approaches: ease of acquisition while keeping robustness and reliability. The present work raises from the necessity to cope with this issue and from the importance of enforcing realistic constraints to the data inversion without being limited to (over)simplistic spatial constraints (for example, characterizing the smooth and/or sharp regularization). Accordingly, the present research demonstrates, by means of synthetic and field data, how the EMI inversion—based on realistic prior models—can be further enhanced by incorporating additional pre-existing pieces of information. While the proposed scheme is quite general, in the specific examples discussed here, these additional pieces of information are, respectively, a reference model along a line across the survey area, and an ERT section. The field EMI results were verified against extensive ground penetrating radar (GPR) measurements and boreholes.

Funder

initiative INPS, “Dottorati innovativi: Intersettoriali, vertenti sulle tematiche dell’iniziativa Industria 4.0—Ciclo XXXVI”—project: “GEOINFER probabilistic inversion of EM data with explicit prior”

C. M. Lerici Foundation

Crafoord Foundation via the project “Alternative geophysical methods for monitoring pollution transport at sites contaminated with chlorinated solvents.”

Innovation Fund Denmark

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3