Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses

Author:

Ghelichkhan S1ORCID,Bunge H-P2ORCID,Oeser J2

Affiliation:

1. Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia

2. Department of Earth and Environmental Sciences, University of Munich, 80333 Munich, Germany

Abstract

SUMMARY During the Cenozoic, the Earth experienced multiple first-order geological events that are likely mantle flow related. These include the termination of large-scale marine inundation in North America in the Palaeocene, the late Tertiary rise of Africa relative to other continents and the long-wavelength tilting of Australia since the late Cretaceous, which occurred when the continent approached the southeast Asia subduction systems on its northward passage from Antartica. Here we explore a suite of eight high-resolution, compressible, global mantle flow retrodictions going back to 50 Ma, using an adoint method with $\approx$670 million finite elements. These retrodictions show for the first time that these events emerge jointly as part of global Cenozoic mantle flow histories. Our retrodictions involve the dynamic effects from an upper mantle low-viscosity zone, assimilate a past plate-motion model for the tangential surface velocity field, probe the influence of two different present-day mantle state estimates derived from seismic tomography, and acknowledge the rheological uncertainties of dynamic Earth models by taking in four different realizations for the radial mantle viscosity profile, two of which were published previously. We find the retrodicted mantle flow histories are sensitive to the present-day mantle state estimate and the rheological properties of the Earth model, meaning that this input information is testable with inferences gleaned from the geological record. For a deep mantle viscosity of $1.7\times 10^{22}$ Pa s and a purely thermal interpretation of seismic structure, lower mantle flow velocities exceed 7 cm yr–1 in some regions, meaning they are difficult to reconcile with the existence of a hotspot reference frame. Conversely, a deep mantle viscosity of $10^{23}$ Pa s yields modest flow velocities (< 3 cm yr–1 ) and stability of deep mantle heterogeneity for much of the retrodiction time, albeit at the expense that African uplift is delayed into the latest Neogene. Retrodictions allow one to track material back in time from any given sampling location, making them potentially useful, for example, to geochemical studies. Our results call for improved estimates on non-isostatic vertical motion of the Earth’s surface—provided, for instance, by basin analysis, seismic stratigraphy, landform studies, thermochronological data or the sedimentation record—to constrain the recent mantle flow history and suggest that mantle flow retrodictions may yield synergies across different Earth science disciplines.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3