Pliocene shorelines and the epeirogenic motion of continental margins: a target dataset for dynamic topography models
-
Published:2024-07-24
Issue:4
Volume:12
Page:883-905
-
ISSN:2196-632X
-
Container-title:Earth Surface Dynamics
-
language:en
-
Short-container-title:Earth Surf. Dynam.
Author:
Hollyday AndrewORCID, Raymo Maureen E., Austermann Jacqueline, Richards Fred, Hoggard MarkORCID, Rovere Alessio
Abstract
Abstract. Global mean sea level during the mid-Pliocene epoch (∼3 Ma), when CO2 and temperatures were above present levels, was notably higher than today due to reduced global ice sheet coverage. Nevertheless, the extent to which ice sheets responded to Pliocene warmth remains in question owing to high levels of uncertainty in proxy-based sea level reconstructions as well as solid Earth dynamic models that have been used to evaluate a limited number of data constraints. Here, we present a global dataset of 10 wave-cut scarps that formed by successive Pliocene sea level oscillations and which are observed today at elevations ranging from ∼6 to 109 m above sea level. The present-day elevations of these features have been identified using a combination of high-resolution digital elevation models and field mapping. Using the MATLAB interface TerraceM, we extrapolate the cliff and platform surfaces to determine the elevation of the scarp toe, which in most settings is buried under meters of talus. We correct the scarp-toe elevations for glacial isostatic adjustment and find that this process alone cannot explain observed differences in Pliocene paleo-shoreline elevations around the globe. We next determine the signal associated with mantle dynamic topography by back-advecting the present-day three-dimensional buoyancy structure of the mantle and calculating the difference in radial surface stresses over the last 3 Myr using the convection code ASPECT. We include a wide range of present-day mantle structures (buoyancy and viscosity) constrained by seismic tomography models, geodynamic observations, and rock mechanics laboratory experiments. Finally, we identify preferred dynamic topography change predictions based on their agreement with scarp elevations and use our most confident result to estimate a Pliocene global mean sea level based on one scarp from De Hoop, South Africa. This inference (11.6 ± 5.2 m) is a downward revision and may imply that ice sheets were relatively resistant to warm Pliocene climate conditions. We also conclude, however, that more targeted model development is needed to more reliably infer mid-Pliocene global mean sea level based on all scarps mapped in this study.
Funder
Australian Research Council European Commission Columbia University
Publisher
Copernicus GmbH
Reference116 articles.
1. Abbasi, I. A., Hersi, O. S., Al-Harthy, A., and Al-Rashdi, I.: Lithofacies attributes, depositional system and diagenetic properties of the Permian Gharif Formation from Haushi–Huqf area, Central Oman, Arab. J. Geosci., 6, 4931–4945, https://doi.org/10.1007/s12517-012-0763-7, 2013. 2. Argus, D. F., Gordon, R. G., and DeMets, C.: Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophy. Geosy., 12, Q11001, https://doi.org/10.1029/2011GC003751, 2011. 3. Austermann, J. and Mitrovica, J. X.: Calculating gravitationally self-consistent sea level changes driven by dynamic topography, Geophys. J. Int., 203, 1909–1922, https://doi.org/10.1093/gji/ggv371, 2015. 4. Austermann, J., Pollard, D., Mitrovica, J. X., Moucha, R., Forte, A. M., DeConto, R. M., Rowley, D. B., and Raymo, M. E.: The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43, 927–930, https://doi.org/10.1130/G36988.1, 2015. 5. Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of a dynamic topography signal in last interglacial sea-level records, Science Advances, 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017.
|
|