Quantitative proteomic sequencing of F 1 hybrid populations reveals the function of sorbitol in apple resistance to Botryosphaeria dothidea

Author:

He Xiaowen1,Meng Hui2,Wang Haibo1,He Ping1,Chang Yuansheng1,Wang Sen1,Wang Chuanzeng3,Li Linguang1,Wang Chen2

Affiliation:

1. Shandong Institute of Pomology , Taian, Shandong 271000, China

2. College of Life Sciences State Key Laboratory of Crop Biology, , Shandong Agricultural University, Taian, Shandong 271018, China

3. Shandong Academy of Agricultural Sciences , Jinan, Shandong 250100, China

Abstract

Abstract Apple ring rot, which is caused by Botryosphaeria dothidea, is one of the most devastating diseases of apple. However, the lack of a known molecular resistance mechanism limits the development of resistance breeding. Here, the ‘Golden Delicious’ and ‘Fuji Nagafu No. 2’ apple cultivars were crossed, and a population of 194 F1 individuals was generated. The hybrids were divided into five categories according to their differences in B. dothidea resistance during three consecutive years. Quantitative proteomic sequencing was performed to analyze the molecular mechanism of the apple response to B. dothidea infection. Hierarchical clustering and weighted gene coexpression network analysis revealed that photosynthesis was significantly correlated with the resistance of apple to B. dothidea. The level of chlorophyll fluorescence in apple functional leaves increased progressively as the level of disease resistance improved. However, the content of soluble sugar decreased with the improvement of disease resistance. Further research revealed that sorbitol, the primary photosynthetic product, played major roles in apple resistance to B. dothidea. Increasing the content of sorbitol by overexpressing MdS6PDH1 dramatically enhanced resistance of apple calli to B. dothidea by activating the expression of salicylic acid signaling pathway-related genes. However, decreasing the content of sorbitol by silencing MdS6PDH1 showed the opposite phenotype. Furthermore, exogenous sorbitol treatment partially restored the resistance of MdS6PDH1-RNAi lines to B. dothidea. Taken together, these findings reveal that sorbitol is an important metabolite that regulates the resistance of apple to B. dothidea and offer new insights into the mechanism of plant resistance to pathogens.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3