Nucleotide Usage Biases Distort Inferences of the Species Tree

Author:

Borges Rui1,Boussau Bastien2ORCID,Szöllősi Gergely J345,Kosiol Carolin16

Affiliation:

1. Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria

2. Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, LBBE, Villeurbanne, France

3. Department of Biological Physics, Eötvös University, Budapest , Hungary

4. MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary

5. Evolutionary Systems Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary

6. Centre for Biological Diversity, University of St Andrews, St Andrews, United Kingdom

Abstract

Abstract Despite the importance of natural selection in species’ evolutionary history, phylogenetic methods that take into account population-level processes typically ignore selection. The assumption of neutrality is often based on the idea that selection occurs at a minority of loci in the genome and is unlikely to compromise phylogenetic inferences significantly. However, genome-wide processes like GC-bias and some variation segregating at the coding regions are known to evolve in the nearly neutral range. As we are now using genome-wide data to estimate species trees, it is natural to ask whether weak but pervasive selection is likely to blur species tree inferences. We developed a polymorphism-aware phylogenetic model tailored for measuring signatures of nucleotide usage biases to test the impact of selection in the species tree. Our analyses indicate that although the inferred relationships among species are not significantly compromised, the genetic distances are systematically underestimated in a node-height-dependent manner: that is, the deeper nodes tend to be more underestimated than the shallow ones. Such biases have implications for molecular dating. We dated the evolutionary history of 30 worldwide fruit fly populations, and we found signatures of GC-bias considerably affecting the estimated divergence times (up to 23%) in the neutral model. Our findings call for the need to account for selection when quantifying divergence or dating species evolution.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3