Novel thermostable GH5_34 arabinoxylanase with an atypical CBM6, displays activity on oat fibre xylan for prebiotic production

Author:

Norlander SiriORCID,Jasilionis Andrius1,Ara Zubaida Gulshan Kazi1ORCID,Grey Carl1,Adlercreutz Patrick1,Karlsson Eva Nordberg1ORCID

Affiliation:

1. Division of Biotechnology , Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund , Sweden

Abstract

Abstract Carbohydrate active enzymes are valuable tools in cereal processing to valorise underutilized side streams. By solubilizing hemicellulose and modifying the fibre structure, novel food products with increased nutritional value can be created. In this study, a novel GH5_34 subfamily arabinoxylanase from Herbinix hemicellulosilytica, HhXyn5A, was identified, produced and extensively characterized, for the intended exploitation in cereal processing to solubilize potential prebiotic fibres; arabinoxylo-oligosaccharides (AXOS). The purified two-domain HhXyn5A (catalytic domain and CBM6) demonstrated high storage stability, showed a melting temperature Tm of 61 °C and optimum reaction conditions were determined to 55 °C and pH 6.5 on wheat arabinoxylan (WAX). HhXyn5A demonstrated activity on various commercial cereal arabinoxylans and produced prebiotic AXOS, while the sole catalytic domain of HhXyn5A did not demonstrate detectable activity. HhXyn5A demonstrated no side activity on oat β-glucan. In contrast to the commercially available homologue CtXyn5A, HhXyn5A gave a more specific HPAEC–PAD oligosaccharide product profile when using WAX and alkali extracted oat bran fibres as substrate. Results from multiple sequence alignment of GH5_34 enzymes, homology modelling of HhXyn5A and docking simulations with ligands XXXA3, XXXA3XX, and X5, concluded that the active site of HhXyl5A catalytic domain is highly conserved and can accommodate both shorter and longer AXOS ligands. However, significant structural dissimilarities between HhXyn5A and CtXyn5A in the binding cleft of CBM6, due to lack of important ligand interacting residues, is suggested to cause the observed differences in substrate specificity and product formation.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3