Amyrel, a novel glucose-forming α-amylase from Drosophila with 4-α-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides

Author:

Feller Georges1,Bonneau Magalie2,Da Lage Jean-Luc2

Affiliation:

1. Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, Liège-Sart Tilman B-4000, Belgium

2. UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France

Abstract

Abstract The α-amylase paralogue Amyrel present in true flies (Diptera Muscomorpha) has been classified as a glycoside hydrolase in CAZy family GH13 on the basis of its primary structure. Here, we report that, in fact, Amyrel is currently unique among animals as it possesses both the hydrolytic α-amylase activity (EC 3.2.1.1) and a 4-α-glucanotransferase (EC 2.4.1.25) transglycosylation activity. Amyrel reacts specifically on α-(1–4) glycosidic bonds of starch and related polymers but produces a complex mixture of maltooligosaccharides, which is in sharp contrast with canonical animal α-amylases. With model maltooligosaccharides G2 (maltose) to G7, the Amyrel reaction starts by a disproportionation leading to Gn − 1 and Gn + 1 products, which by themselves become substrates for new disproportionation cycles. As a result, all detectable odd- and even-numbered maltooligosaccharides, at least up to G12, were observed. However, hydrolysis of these products proceeds simultaneously, as shown by p-nitrophenyl-tagged oligosaccharides and microcalorimetry, and upon prolonged reaction, glucose is the major end-product followed by maltose. The main structural determinant of these atypical activities was found to be a Gly-His-Gly-Ala deletion in the so-called flexible loop bordering the active site. Indeed, engineering this deletion in porcine pancreatic and Drosophila melanogaster α-amylases results in reaction patterns similar to those of Amyrel. It is proposed that this deletion provides more freedom to the substrate for subsites occupancy and allows a less-constrained action pattern resulting in versatile activities at the active site.

Funder

Agence Nationale de la Recherche

Fonds de la Recherche Fondamentale et Collective

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3