Surface acoustic wave (SAW) real-time interaction analysis of influenza A virus hemagglutinins with sialylated neoglycolipids

Author:

Detzner Johanna1,Steil Daniel1,Pohlentz Gottfried1,Legros Nadine1,Müthing Johannes1ORCID

Affiliation:

1. Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany

Abstract

Abstract Real-time interaction analysis of H1 hemagglutinin from influenza A H1N1 (A/New York/18/2009) and H7 hemagglutinin from influenza A H7N7 (A/Netherlands/219/03) with sialylated neoglycolipids (neoGLs) was performed using the surface acoustic wave (SAW) technology. The produced neoGLs carried phosphatidylethanolamine (PE) as lipid anchor and terminally sialylated lactose (Lc2, Galβ1-4Glc) or neolactotetraose (nLc4, Galβ1-4GlcNAcβ1-3Galβ1-4Glc) harboring an N-acetylneuraminic acid (Neu5Ac). Using α2–6-sialylated neoGLs, H1 and H7 exhibited marginal attachment toward II6Neu5Ac-Lc2-PE, whereas Sambucus nigra lectin (SNL) exhibited strong binding and Maackia amurensis lectin (MAL) was negative in accordance with their known binding preference toward a distal Neu5Acα2–6Gal- and Neu5Acα2–3Gal-residue, respectively. H1 revealed significant binding toward IV6Neu5Ac-nLc4-PE when compared to weak interaction of H7, whereas SNL showed strong and MAL no attachment corresponding to their interaction specificities. Additional controls of MAL and SNL with α2–3-sialylated II3Neu5Ac-Lc2-PE and IV3Neu5Ac-nLc4-PE underscored the reliability of the SAW technology. Pre-exposure of model membranes spiked with α2–6-sialylated neoGLs to Vibrio cholerae neuraminidase substantially reduced the binding of the hemagglutinins and the SNL reference. Collectively, the SAW technology is capable of accurate measuring binding features of hemagglutinins toward neoGL-spiked lipid bilayers, which can be easily loaded to the functionalized biosensor gold surface thereby simulating biological membranes and suggesting promising clinical application for influenza virus research.

Funder

Deutsche Forschungsgemeinschaft

German Federal Ministry of Education and Research

IRMRESS

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3