Inhibition of hyaluronan secretion by novel coumarin compounds and chitin synthesis inhibitors

Author:

Tsitrina Alexandra A1,Krasylov Igor V2,Maltsev Dmitry I1,Andreichenko Irina N3,Moskvina Viktoria S2,Ivankov Dmitry N3,Bulgakova Elena V1,Nesterchuk Mikhail3,Shashkovskaya Vera3,Dashenkova Nataliya O1,Khilya Vladimir P2,Mikaelyan Arsen1,Kotelevtsev Yuri3

Affiliation:

1. Laboratory of problems of regeneration, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia

2. Department of Organic Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

3. Center for Neurobiology and Brain Restoration and Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia

Abstract

Abstract Elevated plasma levels of hyaluronic acid (HA) is a disease marker in liver pathology and other inflammatory disorders. Inhibition of HA synthesis with coumarin 4-methylumbelliferone (4MU) has a beneficial effect in animal models of fibrosis, inflammation, cancer and metabolic syndrome. 4MU is an active compound of approved choleretic drug hymecromone with low bioavailability and a broad spectrum of action. New, more specific and efficient inhibitors of hyaluronan synthases (HAS) are required. We have tested several newly synthesized coumarin compounds and commercial chitin synthesis inhibitors to inhibit HA production in cell culture assay. Coumarin derivative compound VII (10′-methyl-6′-phenyl-3′H-spiro[piperidine-4,2′-pyrano[3,2-g]chromene]-4′,8′-dione) demonstrated inhibition of HA secretion by NIH3T3 cells with the half-maximal inhibitory concentration (IC50) = 1.69 ± 0.75 μΜ superior to 4MU (IC50 = 8.68 ± 1.6 μΜ). Inhibitors of chitin synthesis, etoxazole, buprofezin, triflumuron, reduced HA deposition with IC50 of 4.21 ± 3.82 μΜ, 1.24 ± 0.87 μΜ and 1.48 ± 1.44 μΜ, respectively. Etoxazole reduced HA production and prevented collagen fibre formation in the CCl4 liver fibrosis model in mice similar to 4MU. Bioinformatics analysis revealed homology between chitin synthases and HAS enzymes, particularly in the pore-forming domain, containing the proposed site for etoxazole binding.

Funder

Russian Foundation for Basic Research

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3