Author:
Halimani Noreen,Nesterchuk Mikhail,Tsitrina Alexandra A.,Sabirov Marat,Andreichenko Irina N.,Dashenkova Nataliya O.,Petrova Elizaveta,Kulikov Alexey M.,Zatsepin Timofei S.,Romanov Roman A.,Mikaelyan Arsen S.,Kotelevtsev Yuri V.
Abstract
AbstractHepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.
Funder
Russian Foundation for Basic Research
IDB RAS
Ministry of Science and Higher Education of the Russian Federation
Publisher
Springer Science and Business Media LLC