Characterization of the β-glucuronidase Pn3Pase as the founding member of glycoside hydrolase family GH169

Author:

Wantuch Paeton L12,Jella Satya2,Duke Jeremy A12,Mousa Jarrod J34,Henrissat Bernard567,Glushka John8,Avci Fikri Y12ORCID

Affiliation:

1. Department of Biochemistry & Molecular Biology, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA

2. Center for Molecular Medicine, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA

3. Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr Athens, Athens GA 30602, USA

4. Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr Athens, Athens GA 30602, USA

5. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France

6. USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France

7. Department of Biological Sciences, King Abdulaziz University, Al Jami`ah, Jeddah, 23218, Saudi Arabia

8. Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA

Abstract

Abstract Paenibacillus sp. 32352 is a soil-dwelling bacterium capable of producing an enzyme, Pn3Pase that degrades the capsular polysaccharide of Streptococcus pneumoniae serotype 3 (Pn3P). Recent reports on Pn3Pase have demonstrated its initial characterization and potential for protection against highly virulent S. pneumoniae serotype 3 infections. Initial experiments revealed this enzyme functions as an exo-β1,4-glucuronidase cleaving the β(1,4) linkage between glucuronic acid and glucose. However, the catalytic mechanism of this enzyme is still unknown. Here, we report the detailed biochemical analysis of Pn3Pase. Pn3Pase shows no significant sequence similarity to known glycoside hydrolase (GH) families, thus this novel enzyme establishes a new carbohydrate-active enzyme (CAZy) GH family. Site-directed mutagenesis studies revealed two catalytic residues along with truncation mutants defining essential domains for function. Pn3Pase and its mutants were screened for activity, substrate binding and kinetics. Additionally, nuclear magnetic resonance spectroscopy analysis revealed that Pn3Pase acts through a retaining mechanism. This study exhibits Pn3Pase activity at the structural and mechanistic level to establish the new CAZy GH family GH169 belonging to the large GH-A clan. This study will also serve toward generating Pn3Pase derivatives with optimal activity and pharmacokinetics aiding in the use of Pn3Pase as a novel therapeutic approach against type 3 S. pneumoniae infections.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3