Affiliation:
1. School of Artificial Intelligence, Jilin University
2. School of Computer Science, Northeast Normal University
3. Department of Computer science, City University of Hong Kong, Hong Kong SAR
Abstract
Abstract
The identification of hidden responders is often an essential challenge in precision oncology. A recent attempt based on machine learning has been proposed for classifying aberrant pathway activity from multiomic cancer data. However, we note several critical limitations there, such as high-dimensionality, data sparsity and model performance. Given the central importance and broad impact of precision oncology, we propose nature-inspired deep Ras activation pan-cancer (NatDRAP), a deep neural network (DNN) model, to address those restrictions for the identification of hidden responders. In this study, we develop the nature-inspired deep learning model that integrates bulk RNA sequencing, copy number and mutation data from PanCanAltas to detect pan-cancer Ras pathway activation. In NatDRAP, we propose to synergize the nature-inspired artificial bee colony algorithm with different gradient-based optimizers in one framework for optimizing DNNs in a collaborative manner. Multiple experiments were conducted on 33 different cancer types across PanCanAtlas. The experimental results demonstrate that the proposed NatDRAP can provide superior performance over other benchmark methods with strong robustness towards diagnosing RAS aberrant pathway activity across different cancer types. In addition, gene ontology enrichment and pathological analysis are conducted to reveal novel insights into the RAS aberrant pathway activity identification and characterization. NatDRAP is written in Python and available at https://github.com/lixt314/NatDRAP1.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
Hong Kong Special Administrative Region
Health and Medical Research Fund
Food and Health Bureau
Hong Kong Institute for Data Science
City University of Hong Kong
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献