Deep learning-enabled breast cancer endocrine response determination from H&E staining based on ESR1 signaling activity

Author:

Ng Chun Wai,Wong Kwong-Kwok

Abstract

AbstractEstrogen receptor (ER) positivity by immunohistochemistry has long been a main selection criterium for breast cancer patients to be treated with endocrine therapy. However, ER positivity might not directly correlate with activated ER signaling activity, which is a better predictor for endocrine therapy responsiveness. In this study, we investigated if a deep learning method using whole-slide H&E-stained images could predict ER signaling activity. First, ER signaling activity score was determined using RNAseq data available from each of the 1082 breast cancer samples in the TCGA Pan-Cancer dataset based on the Hallmark Estrogen Response Early gene set from the Molecular Signature Database (MSigDB). Then the processed H&E-stained images and ER signaling activity scores from a training cohort were fed into ResNet101 with three additional fully connected layers to generate a predicted ER activity score. The trained models were subsequently applied to an independent testing cohort. The result demonstrated that ER + /HER2- breast cancer patients with a higher predicted ER activity score had longer progression-free survival (p = 0.0368) than those with lower predicted ER activity score. In conclusion, a convolutional deep neural network can predict prognosis and endocrine therapy response in breast cancer patients based on whole-slide H&E-stained images. The trained models were found to robustly predict the prognosis of ER + /HER2- patients. This information is valuable for patient management, as it does not require RNA-seq or microarray data analyses. Thus, these models can reduce the cost of the diagnosis workflow if such information is required.

Funder

Ovarian Cancer Moon Shot at MD Anderson Cancer Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3