GutBalance: a server for the human gut microbiome-based disease prediction and biomarker discovery with compositionality addressed

Author:

Yang Fenglong1ORCID,Zou Quan23ORCID,Gao Bo4

Affiliation:

1. University of Electronic Science and Technology of China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

3. Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou 571158, China

4. Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China

Abstract

Abstract The compositionality of the microbiome data is well-known but often neglected. The compositional transformation pertains to the supervised learning of microbiome data and is a critical step that decides the performance and reliability of the disease classifiers. We value the excellent performance of the distal discriminative balance analysis (DBA) method, which selects distal balances of pairs and trios of bacteria, in addressing the classification of high-dimensional microbiome data. By applying this method to the species-level abundances of all the disease phenotypes in the GMrepo database, we build a balance-based model repository for the classification of human gut microbiome–related diseases. The model repository supports the prediction of disease risks for new sample(s). More importantly, we highlight the concept of balance-disease associations rather than the conventional microbe-disease associations and develop the human Gut Balance-Disease Association Database (GBDAD). Each predictable balance for each disease model indicates a potential biomarker-disease relationship and can be interpreted as a bacteria ratio positively or negatively correlated with the disease. Furthermore, by linking the balance-disease associations to the evidenced microbe-disease associations in MicroPhenoDB, we surprisingly found that most species-disease associations inferred from the shotgun metagenomic datasets can be validated by external evidence beyond MicroPhenoDB. The balance-based species-disease association inference will accelerate the generation of new microbe-disease association hypotheses in gastrointestinal microecology research and clinical trials. The model repository and the GBDAD database are deployed on the GutBalance server, which supports interactive visualization and systematic interrogation of the disease models, disease-related balances and disease-related species of interest.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3