Overview of data preprocessing for machine learning applications in human microbiome research

Author:

Ibrahimi Eliana,Lopes Marta B.,Dhamo Xhilda,Simeon Andrea,Shigdel Rajesh,Hron Karel,Stres Blaž,D’Elia Domenica,Berland Magali,Marcos-Zambrano Laura Judith

Abstract

Although metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical specificities of the data (e.g., sparse, over-dispersed, compositional, inter-variable dependency). This mini review explores preprocessing and transformation methods applied in recent human microbiome studies to address microbiome data analysis challenges. Our results indicate a limited adoption of transformation methods targeting the statistical characteristics of microbiome sequencing data. Instead, there is a prevalent usage of relative and normalization-based transformations that do not specifically account for the specific attributes of microbiome data. The information on preprocessing and transformations applied to the data before analysis was incomplete or missing in many publications, leading to reproducibility concerns, comparability issues, and questionable results. We hope this mini review will provide researchers and newcomers to the field of human microbiome research with an up-to-date point of reference for various data transformation tools and assist them in choosing the most suitable transformation method based on their research questions, objectives, and data characteristics.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference97 articles.

1. Recent progress in analyzing the spatial structure of the human microbiome: Distinguishing biogeography and architecture in the oral and gut communities;Adade;Curr. Opin. Endocr. Metab. Res.,2021

2. The statistical analysis of compositional data (with discussion);Aitchison;J R Stat Soc Series B,1982

3. The Statistical Analysis of Compositional Data

4. Deblur rapidly resolves single-nucleotide community sequence patterns;Amir;MSystems,2017

5. Scoping studies: towards a methodological framework;Arksey;Int. J. Soc. Res. Methodol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3