Disease characterization using a partial correlation-based sample-specific network

Author:

Huang Yanhong1,Chang Xiao2,Zhang Yu3,Chen Luonan4,Liu Xiaoping3

Affiliation:

1. Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China, and School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China

2. Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China

3. School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China

4. Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China, a

Abstract

Abstract A single-sample network (SSN) is a biological molecular network constructed from single-sample data given a reference dataset and can provide insights into the mechanisms of individual diseases and aid in the development of personalized medicine. In this study, we proposed a computational method, a partial correlation-based single-sample network (P-SSN), which not only infers a network from each single-sample data given a reference dataset but also retains the direct interactions by excluding indirect interactions (https://github.com/hyhRise/P-SSN). By applying P-SSN to analyze tumor data from the Cancer Genome Atlas and single cell data, we validated the effectiveness of P-SSN in predicting driver mutation genes (DMGs), producing network distance, identifying subtypes and further classifying single cells. In particular, P-SSN is highly effective in predicting DMGs based on single-sample data. P-SSN is also efficient for subtyping complex diseases and for clustering single cells by introducing network distance between any two samples.

Funder

Shanghai Municipal Science and Technology Commission

Humanities and Social Sciences in Colleges and Universities of Anhui Province

Anhui Finance and Economics University

Natural Science of Anhui Provincial Education Department

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3