Microbes and complex diseases: from experimental results to computational models

Author:

Zhao Yan1,Wang Chun-Chun1ORCID,Chen Xing1ORCID

Affiliation:

1. School of Information and Control Engineering, China University of Mining

Abstract

Abstract Studies have shown that the number of microbes in humans is almost 10 times that of cells. These microbes have been proven to play an important role in a variety of physiological processes, such as enhancing immunity, improving the digestion of gastrointestinal tract and strengthening metabolic function. In addition, in recent years, more and more research results have indicated that there are close relationships between the emergence of the human noncommunicable diseases and microbes, which provides a novel insight for us to further understand the pathogenesis of the diseases. An in-depth study about the relationships between diseases and microbes will not only contribute to exploring new strategies for the diagnosis and treatment of diseases but also significantly heighten the efficiency of new drugs development. However, applying the methods of biological experimentation to reveal the microbe-disease associations is costly and inefficient. In recent years, more and more researchers have constructed multiple computational models to predict microbes that are potentially associated with diseases. Here, we start with a brief introduction of microbes and databases as well as web servers related to them. Then, we mainly introduce four kinds of computational models, including score function-based models, network algorithm-based models, machine learning-based models and experimental analysis-based models. Finally, we summarize the advantages as well as disadvantages of them and set the direction for the future work of revealing microbe–disease associations based on computational models. We firmly believe that computational models are expected to be important tools in large-scale predictions of disease-related microbes.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference132 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3