Predicting potential microbe–disease associations based on dual branch graph convolutional network

Author:

Chen Jing1ORCID,Zhu Yongjun1,Yuan Qun2

Affiliation:

1. School of Electronic and Information Engineering Suzhou University of Science and Technology Suzhou China

2. Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School Suzhou China

Abstract

AbstractStudying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time‐consuming and costly nature of laboratory‐based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe–disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe–disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine‐tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five‐fold cross‐validation (5‐fold‐CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5‐fold‐CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe–disease associations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3