Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies

Author:

Pang Yuxuan12,Wang Zhuo1,Jhong Jhih-Hua13,Lee Tzong-Yi14

Affiliation:

1. Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China

2. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China

3. Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan

4. School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P.R. China

Abstract

Abstract As the current worldwide outbreaks of the SARS-CoV-2, it is urgently needed to develop effective therapeutic agents for inhibiting the pathogens or treating the related diseases. Antimicrobial peptides (AMP) with functional activity against coronavirus could be a considerable solution, yet there is no research for identifying anti-coronavirus (anti-CoV) peptides with the computational approach. In this study, we first investigated the physiochemical and compositional properties of the collected anti-CoV peptides by comparing against three other negative sets: antivirus peptides without anti-CoV function (antivirus), regular AMP without antivirus functions (non-AVP) and peptides without antimicrobial functions (non-AMP). Then, we established classifiers for identifying anti-CoV peptides between different negative sets based on random forest. Imbalanced learning strategies were adopted due to the severe class-imbalance within the datasets. The geometric mean of the sensitivity and specificity (GMean) under the identification from antivirus, non-AVP and non-AMP reaches 83.07%, 85.51% and 98.82%, respectively. Then, to pursue identifying anti-CoV peptides from broad-spectrum peptides, we designed a double-stages classifier based on the collected datasets. In the first stage, the classifier characterizes AMPs from regular peptides. It achieves an area under the receiver operating curve (AUCROC) value of 97.31%. The second stage is to identify the anti-CoV peptides between the combined negatives of other AMPs. Here, the GMean of evaluation on the independent test set is 79.42%. The proposed approach is considered as an applicable scheme for assisting the development of novel anti-CoV peptides. The datasets and source codes used in this study are available at https://github.com/poncey/PreAntiCoV.

Funder

National Natural Science Foundation of China

Warshel Institute of Computational Biology

Chinese University of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3