Current Development of Data Resources and Bioinformatics Tools for Anticoronavirus Peptide

Author:

Li Bowen1,Li Min1,Lu Chunying1,Wu Yifei1,Chen Heng1,He Bifang1

Affiliation:

1. Medical College, Guizhou University, Guiyang, 550025, Guizhou, China

Abstract

Background: Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2, which gave rise to coronavirus disease 2019 (COVID-19), has considerably impacted global health. The identification of effective anticoronavirus peptides (ACVPs) and the establishment of robust data storage methods are critical in the fight against COVID-19. Traditional wet-lab peptide discovery approaches are timeconsuming and labor-intensive. With advancements in computer technology and bioinformatics, machine learning has gained prominence in the extraction of functional peptides from extensive datasets. Methods: In this study, we comprehensively review data resources and predictors related to ACVPs published over the past two decades. In addition, we analyze the influence of various factors on model performance. Results: We have reviewed nine ACVP-containing databases, which integrate detailed information on protein fragments effective against coronaviruses, providing crucial references for the development of antiviral drugs and vaccines. Additionally, we have assessed 15 peptide predictors for antiviral or specifically anticoronavirus activity. These predictors employ computational models to swiftly screen potential antiviral candidates, offering an efficient pathway for drug development. Conclusion: Our study provides conclusive results and insights into the performance of different computational methods, and sheds light on the future trajectory of bioinformatics tools for ACVPs. This work offers a representative overview of contributions to the field, with an emphasis on the crucial role of ACVPs in combating COVID-19.

Funder

National Natural Science Foundation of China

Science and Technology Department of Guizhou Province

Health Commission of Guizhou Province

Guizhou University

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3