DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence

Author:

Song Qianqian12ORCID,Su Jing34

Affiliation:

1. Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, USA

2. Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA

3. Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA

4. Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

Abstract

Abstract Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.

Funder

Indiana University Precision Health Initiative

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3