Integration tools for scRNA-seq data and spatial transcriptomics sequencing data

Author:

Yan Chaorui1,Zhu Yanxu1,Chen Miao1,Yang Kainan1,Cui Feifei1ORCID,Zou Quan23ORCID,Zhang Zilong1ORCID

Affiliation:

1. School of Computer Science and Technology, Hainan University , Haikou, 570228 , China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610054 , China

3. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China , Quzhou 324000 , China

Abstract

Abstract Numerous methods have been developed to integrate spatial transcriptomics sequencing data with single-cell RNA sequencing (scRNA-seq) data. Continuous development and improvement of these methods offer multiple options for integrating and analyzing scRNA-seq and spatial transcriptomics data based on diverse research inquiries. However, each method has its own advantages, limitations and scope of application. Researchers need to select the most suitable method for their research purposes based on the actual situation. This review article presents a compilation of 19 integration methods sourced from a wide range of available approaches, serving as a comprehensive reference for researchers to select the suitable integration method for their specific research inquiries. By understanding the principles of these methods, we can identify their similarities and differences, comprehend their applicability and potential complementarity, and lay the foundation for future method development and understanding. This review article presents 19 methods that aim to integrate scRNA-seq data and spatial transcriptomics data. The methods are classified into two main groups and described accordingly. The article also emphasizes the incorporation of High Variance Genes in annotating various technologies, aiming to obtain biologically relevant information aligned with the intended purpose.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3