Affiliation:
1. Department of Bioscience, Aarhus University, Aarhus, Denmark
2. Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
Abstract
Abstract
By perturbing co-evolved interactions, biological invasions provide an opportunity to study the evolution of interactions between hosts and their parasites on ecological timescales. We studied the interaction between the cane toad (Rhinella marina) and its direct-lifecycle lungworm (Rhabdias pseudosphaerocephala) that was brought from South America to Australia with the toads in 1935. Compared with infective parasite larvae from long-established (range-core) toad populations, parasite larvae from toads near the invasion front were larger, lived longer and were better able to resist exposure to toxin from the parotoid glands of toads. Experimentally, we infected the common-garden-reared progeny of toads from range-core and invasion-front populations within Australia with lungworms from both populations. Infective larvae from invasion-front (vs. range-core) populations of the parasite were more successful at entering toads (by skin penetration) and establishing infections in the lungs. Toads from invasion-front populations were less prone to infection by either type of larvae. Thus, within 84 years, parasites at an invasion front have increased infectivity, whereas hosts have increased resistance to parasite infection compared with range-core populations. Rapid evolution of traits might affect host–parasite interactions during biological invasions, generating unpredictable effects both on the invaders and on native ecosystems.
Funder
Australian Research Council
Publisher
Oxford University Press (OUP)
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献