Rapidly evolved traits enable new conservation tools: perspectives from the cane toad invasion of Australia

Author:

Shine Richard1ORCID,Baeckens Simon23ORCID

Affiliation:

1. School of Natural Sciences, Macquarie University , Sydney , Australia

2. Department of Biology, University of Antwerp , Antwerp , Belgium

3. Department of Biology, Ghent University , Ghent , Belgium

Abstract

AbstractNatural populations can show rapid adaptive responses to intense (human-mediated) environmental change. The potential for exploiting rapidly evolved traits for conservation management has been often discussed but rarely implemented. Capitalizing on a well-studied biological invasion, we here explore the idea that rapid phenotypic change in the invaders, their pathogens, and the native biota provide opportunities for managers to control invader abundance and buffer adverse impacts on native wildlife. Intensive studies of the invasion of tropical Australia by cane toads (Rhinella marina) have identified newly evolved vulnerabilities that we could exploit for toad control; and newly evolved resilience of native wildlife that we could exploit for impact reduction. For example, distinctive phenotypes of toads at the expanding range edge enhance dispersal rate but reduce reproductive output, intraspecific competitive ability, and immunocompetence; and the evolution of larval cannibalism creates opportunities not only for species-specific trapping of toad tadpoles, but also could be exploited (when allied to emerging CRISPR-Cas9 techniques) to intensify intraspecific conflict in invasive toads. That is, we could use the invasive species to control their own populations. This case study illustrates the potential of detailed basic research to identify novel approaches for conservation.

Funder

Fonds Wetenschappelijk Onderzoek

Francqui Foundation

SSE International Event

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3