A generalized approach to characterize optical properties of natural objects

Author:

Ospina-Rozo Laura1ORCID,Roberts Ann2ORCID,Stuart-Fox Devi1ORCID

Affiliation:

1. School of Biosciences, University of Melbourne , VIC 3010 , Australia

2. ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne , VIC 3010 , Australia

Abstract

Abstract To understand the diversity of ways in which natural materials interact with light, it is important to consider how their reflectance changes with the angle of illumination or viewing and to consider wavelengths beyond the visible. Efforts to characterize these optical properties, however, have been hampered by heterogeneity in measurement techniques, parameters and terminology. Here, we propose a standardized set of measurements, parameters and terminology to describe the optical properties of natural objects based on spectrometry, including angle-dependent effects, such as iridescence and specularity. We select a set of existing measurements and parameters that are generalizable to any wavelength range and spectral shape, and we highlight which subsets of measures are relevant to different biological questions. As a case study, we have applied these measures to 30 species of Christmas beetles, in which we observed previously unrealized diversity in visible and near-infrared reflectance. As expected, reflection of short wavelengths was associated with high spectral purity and angle dependence. In contrast to simple, artificial structures, iridescence and specularity were not strongly correlated, highlighting the complexity and modularity of natural materials. Species did not cluster according to spectral parameters or genus, suggesting high lability of optical properties. The proposed standardization of measures and parameters will improve our understanding of biological adaptations for manipulating light by facilitating the systematic comparison of complex optical properties, such as glossy or metallic appearances and visible or near-infrared iridescence.

Funder

Australian Research Council

Australian Research Council Centre of Excellence Scheme

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3