The carotenoid redshift: Physical basis and implications for visual signaling

Author:

McCoy Dakota E.123ORCID,Shultz Allison J.4,Dall Jacqueline E.4,Dionne Jennifer A.15,Johnsen Sönke3

Affiliation:

1. Department of Materials Science and Engineering Stanford University Stanford California USA

2. Hopkins Marine Station Stanford University Pacific Grove California USA

3. Department of Biology Duke University Durham North Carolina USA

4. Ornithology Department Natural History Museum of Los Angeles County Los Angeles California USA

5. Department of Radiology Stanford University Stanford California USA

Abstract

AbstractCarotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid‐based signals have spectrally asymmetric reflectance in the visible range. Adding pigment disproportionately affects the high‐absorbance regions of the reflectance spectra, which redshifts the perceived hue. This carotenoid redshift is substantial and perceivable by animal observers. In addition, beyond pigment concentration, anything that increases the path length of light through pigment causes this redshift (including optical nano‐ and microstructures). For example, male Ramphocelus tanagers appear redder than females, despite the same population and concentration of carotenoids, due to microstructures that enhance light–pigment interaction. This mechanism of carotenoid redshift has sensory and evolutionary consequences for honest signaling in that structures that redshift carotenoid ornaments may decrease signal honesty. More generally, nearly all colorful signals vary in hue, saturation, and brightness as light–pigment interactions change, due to spectrally asymmetrical reflectance within the visible range of the relevant species. Therefore, the three attributes of color need to be considered together in studies of honest visual signaling.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3