Does oxygen affect ageing mechanisms of Pinus densiflora seeds? A matter of cytoplasmic physical state

Author:

Gerna Davide1ORCID,Ballesteros Daniel2ORCID,Arc Erwann1ORCID,Stöggl Wolfgang1ORCID,Seal Charlotte E2ORCID,Marami-Zonouz Nicki1,Na Chae Sun3ORCID,Kranner Ilse1ORCID,Roach Thomas1ORCID

Affiliation:

1. Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria

2. Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK

3. Seed Conservation Research Division, Department of Seed Vault, Baekdudaegan National Arboretum, 2160-53 Munsu-ro, Chunyang-myeon, Bonghwa-gun, Gyeongsangbuk-do, Republic of Korea

Abstract

Abstract During desiccation, the cytoplasm of orthodox seeds solidifies into an intracellular glass with highly restricted diffusion and molecular mobility. Temperature and water content govern seed ageing rates, while oxygen (O2) can promote deteriorative reactions. However, whether the cytoplasmic physical state affects involvement of O2 in seed ageing remains unresolved. We aged Pinus densiflora seeds by controlled deterioration (CD) at 45 °C and distinct relative humidity (RH), resulting in cells with a glassy (11% and 30% RH) or fluid (60% and 80% RH) cytoplasm. Hypoxic conditions (0.4% O2) during CD delayed seed deterioration, lipid peroxidation, and decline of antioxidants (glutathione, α-tocopherol, and γ-tocopherol), but only when the cytoplasm was glassy. In contrast, when the cytoplasm was fluid, seeds deteriorated at the same rate regardless of O2 availability, while being associated with limited lipid peroxidation, detoxification of lipid peroxide products, substantial loss of glutathione, and resumption of glutathione synthesis. Changes in metabolite profiles provided evidence of other O2-independent enzymatic reactions in a fluid cytoplasm, including aldo-keto reductase and glutamate decarboxylase activities. Biochemical profiles of seeds stored under seed bank conditions resembled those obtained after CD regimes that maintained a glassy cytoplasm. Overall, O2 contributed more to seed ageing when the cytoplasm was glassy, rather than fluid.

Funder

Ministry of the Republic of South Korea

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3