Affiliation:
1. Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
2. Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
Abstract
Abstract
A plant-like cryptochrome of diatom microalgae, CryP, acts as a photoreceptor involved in transcriptional regulation. It contains FAD and 5,10-methenyltetrahydrofolate as chromophores. Here, we demonstrate that the unstructured C-terminal extension (CTE) of CryP has an influence on the redox state of the flavin. In CryP lacking the CTE, the flavin is in the oxidized state (FADox), whereas it is a neutral radical (FADH•) in the full-length protein. When the CTE of CryP is coupled to another diatom cryptochrome that naturally binds FADox, this chimera also binds FADH•. In full-length CryP, FADH• is the most stable redox state and oxidation to FADox is extremely slow, whereas reduction to FADH2 is reversible in the dark in approximately 1 h. We also identified novel interaction partners of this algal CRY and characterized two of them in depth regarding their binding activities. BolA, a putative transcription factor, binds to monomeric and to dimeric CryP via the CTE, independent of the redox state of the flavin. In contrast, an unknown protein, ID42612, which occurs solely in heterokont algae, binds only to CryP dimers. This binding is independent of the CTE and shows slight differences in strength depending on the flavin’s redox state.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献