Effects of natural light on improving the lighting and energy efficiency of buildings: toward low energy consumption and CO2 emission

Author:

Bashir Faizah Mohammed1,Dodo Yakubu Aminu2,Mohamed Mohamed Ahmed said34,Norwawi Norita Md5,Shannan Nahla M6,Afghan Amirhossein Aghajani7ORCID

Affiliation:

1. University of Hail Department of Decoration and Interior Design, , Hail, 55476, Kingdom of Saudi Arabia

2. Najran University Architectural Engineering Department, , Najran, 66426, Kingdom of Saudi Arabia

3. University of Hail Department of Architectural Engineering, , Hail, 55476, Kingdom of Saudi Arabia

4. Sudan University of Science and Technology Khartoum College of Architecture, , Sudan

5. Universiti Sains Islam Malaysia Faculty of Science and Technology, , Nilai, Negeri Sembilan, Malaysia

6. University of Hail Program in Electronics and Telecommunications Engineering Technology, Applied College, , Hail, Kingdom of Saudi Arabia

7. Iran University of Science and Technology Department of Mechanical Engineering, , Tehran, Iran

Abstract

Abstract Visual information acquisition is essential for our daily lives, with vision relying on the presence of light. Lighting systems serve the fundamental purpose of enabling vision. This study aims to contribute to sustainable architectural design by emphasizing the efficient utilization of natural daylight. Specifically, the design of skylights or light wells in low–lateral-area, deep-depth structures is of significant importance. While current design criteria consider skylight dimensions and the skylight-to-building height ratio, these factors alone may not suffice for optimal skylight design. To achieve an appropriate lighting and architectural design for such structures, it is essential to evaluate the factors influencing the required amount of daylight on different floors. This study aims to investigate the impact of skylights and light wells on the energy consumption and CO2 emissions of a four-storey building located in Hail, Kingdom of Saudi Arabia. The physical parameters of skylights and light wells were analyzed, taking into account various aspects that affect the amount of light reaching different levels. The findings highlight the significant influence of skylight size on the light reaching the building’s floors. For square skylights, reducing the well index (increasing skylight size) exponentially increases the daylight factor. Furthermore, this study evaluates the annual energy consumption and carbon dioxide emissions of the building, considering the daylighting factor. The results demonstrate that skylights contribute to increased solar heat gain, thermal conductance, and artificial lighting efficiency. Notably, as the lighting factor of the building increases from 3% to 6%, there is an annual decrease of 3% in CO2 emissions.

Funder

Scientific Research Deanship at University of Hail—Saudi Arabia

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3