A study of the skylight coverage ratio for air-conditioned atriumsin the hot and humid regions

Author:

Lou Siwei1,Huang Yu1,Xia Dawei2,Lun Isaac Y F3,Li Danny H W4

Affiliation:

1. School of Civil Engineering, Guangzhou University, 230 Guangzhou Higher Education Mega Center West Outer Ring Road, Panyu District, Guangzhou 510006, China

2. School of Architecture and Urban Planning, Guangzhou University, 230 Guangzhou Higher Education Mega Center West Outer Ring Road, Panyu District, Guangzhou 510006, China

3. Department of Architecture and Built Environment , University of Nottingham, Ningbo 315100, China

4. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China

Abstract

Abstract The skylight on the roof of an atrium can be popular for commercial malls to illuminate the core area of the building. However, the solar radiation and its heat can get into the building together with the daylight, causing excessive cooling load. This paper studies the daylighting and energy performances of skylight coverage area for the air-conditioned atriums in the hot and humid regions. The energy performance with different atrium heights, glass types and the coverage ratios of the skylight are studied. The daylight performance was simulated by the ray-tracing Radiance and was transferred into EnergyPlus for energy evaluations. The finding suggested that, for hot and humid climates, the skylight coverage ratio should be controlled carefully to prevent the excessive solar heat gain. When the on/off lighting control is applied, the total energy consumption of the single-floor cases (or of the top floor for the multi-floor cases) leveled off when the coverage ratio of the skylight reached 9%. Thus, the skylight is favorable to the energy saving of the low-rise or single-floor commercial buildings only under the current assumptions, as the ground of the atrium cannot be well illuminated while the excessive solar radiation gets into the building. The skylight should be shaded in cooling seasons to prevent the excessive solar heat gains.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3