Predicting Vertical Daylight Illuminance Data From Measured Solar Irradiance: A Machine Learning-Based Luminous Efficacy Approach

Author:

Li Danny Hin Wa1,Aghimien Emmanuel Imuetinyan1

Affiliation:

1. City University of Hong Kong Building Energy Research Group, Department of Architecture, and Civil Engineering, , 83 Tat Chee Ave, Kowloon , Hong Kong

Abstract

Abstract Daylight data are required for energy-efficient building designs. However, daylight is scarcely measured, making the luminous efficacy model an alternative. This paper presents a method for modeling vertical luminous efficacy (Kvg) using measured data from measuring stations in Hong Kong. The artificial neural network (ANN), support vector machines (SVM), and empirical correlations were proposed for modeling Kvg. Machine learning (ML) models like ANN and SVM were used because they offer more accurate daylight predictions and ease in explaining complex relationships between atmospheric variables. Also, ML was explored since it has not been used in earlier vertical luminous efficacy studies. Sensitivity analysis was also carried out to determine the relative importance of input variables used for developing the proposed models. Findings show that scattering angle and diffuse fraction are crucial variables in vertical luminous efficacy modeling. Furthermore, when all proposed models were used to predict vertical daylight, it was observed that the peak relative root mean square error (%RMSE) was less than 18.6%. The obtained %RMSE showed that all models provided acceptable performance when evaluated against the measured daylight data. Finally, the findings also showed that the ANN models outperformed the SVM and empirical models.

Funder

City University of Hong Kong

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3