New energy power demand prediction and optimal scheduling based on artificial intelligence in smart grid

Author:

Duan Jie1ORCID

Affiliation:

1. State Grid Information and Telecommunication Co ., Taiyuan Xinyuan Road, Shanxi 030021, China

Abstract

Abstract With the development of smart grid, the demand for new energy power increases. Improving the accuracy of new energy power demand forecast is an important basis for the orderly operation of power system. This article presents a new energy power demand forecasting method based on DESSA-NESN algorithm. First, differential evolution algorithm (DE) and sparrow search algorithm (SSA) are combined, and operations such as mutation, crossing and screening are introduced into the population updating process of SSA. The internal state function of the savings pool of the standard echo state network (ESN) is replaced by the hyperbolic tangent function to obtain the nonlinear echo state network (NESN). Then, the parameters of deep echo state network (DESN) are optimized using DESSA algorithm. The DESSA-DESN prediction model is established. Finally, the mean absolute percentage error (MAPE) and root mean square error (RMSE) of DESSA-NESN were 15.84 and 0.12%, respectively, and the prediction effect was better than other comparison models.

Publisher

Oxford University Press (OUP)

Reference26 articles.

1. Development of nuclear power in China under carbon neutrality target;Ping;Energy Conserv Technol,2023

2. Density forecasting for long-term electricity demand in South Africa using quantile regression;Mokilane;S Afr J Econ Manag Sci,2018

3. Short-term autoregressive prediction of urban load considering daily periodicity;Li;Energy Conserv Technol,2020

4. Using relational analysis and multi-variable grey model for electricity demand forecasting in smart grid environment;Yunping;Power Syst Protect Control,2012

5. The use of extreme value theory for forecasting long- term substation maximum electricity demand;Li;IEEE Trans Power Syst,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3