Density forecasting for long-term electricity demand in South Africa using quantile regression

Author:

Mokilane Paul,Galpin Jacky,Yadavalli V.S. SarmaORCID,Debba Provesh,Koen ReneeORCID,Sibiya Siphamandla

Abstract

Background: This study involves forecasting electricity demand for long-term planning purposes. Long-term forecasts for hourly electricity demands from 2006 to 2023 are done with in-sample forecasts from 2006 to 2012 and out-of-sample forecasts from 2013 to 2023. Quantile regression (QR) is used to forecast hourly electricity demand at various percentiles. Three contributions of this study are (1) that QR is used to generate long-term forecasts of the full distribution per hour of electricity demand in South Africa; (2) variabilities in the forecasts are evaluated and uncertainties around the forecasts can be assessed as the full demand distribution is forecasted and (3) probabilities of exceedance can be calculated, such as the probability of future peak demand exceeding certain levels of demand. A case study, in which forecasted electricity demands over the long-term horizon were developed using South African electricity demand data, is discussed. Aim: The aim of the study was: (1) to apply a quantile regression (QR) model to forecast hourly distribution of electricity demand in South Africa; (2) to investigate variabilities in the forecasts and evaluate uncertainties around point forecasts and (3) to determine whether the future peak electricity demands are likely to increase or decrease. Setting: The study explored the probabilistic forecasting of electricity demand in South Africa. Methods: The future hourly electricity demands were forecasted at 0.01, 0.02, 0.03, … , 0.99 quantiles of the distribution using QR, hence each hour of the day would have 99 forecasted future hourly demands, instead of forecasting just a single overall hourly demand as in the case of OLS. Results: The findings are that the future distributions of hourly demands and peak daily demands would be more likely to shift towards lower demands over the years until 2023 and that QR gives accurate long-term point forecasts with the peak demands well forecasted. Conclusion: QR gives forecasts at all percentiles of the distribution, allowing the potential variabilities in the forecasts to be evaluated by comparing the 50th percentile forecasts with the forecasts at other percentiles. Additional planning information, such as expected pattern shifts and probable peak values, could also be obtained from the forecasts produced by the QR model, while such information would not easily be obtained from other forecasting approaches. The forecasted electricity demand distribution closely matched the actual demand distribution between 2012 and 2015. Therefore, the forecasted demand distribution is expected to continue representing the actual demand distribution until 2023. Using a QR approach to obtain long-term forecasts of hourly load profile patterns is, therefore, recommended.

Publisher

AOSIS

Subject

General Economics, Econometrics and Finance,General Business, Management and Accounting

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3