Arabidopsis RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the Agrobacterium tumefaciens Infection Process

Author:

Huang Fan-Chen1,Chi Shin-Fei1,Chien Pei-Ru1,Liu Yin-Tzu1,Chang Hsin-Nung1,Lin Choun-Sea2,Hwang Hau-Hsuan13ORCID

Affiliation:

1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan

2. Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan

3. Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan

Abstract

ABSTRACT Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are five members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation assays and glutathione-S-transferase pull-down assays showed that RAB8A, 8B and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells and in vitro. Furthermore, RAB8A, 8B and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B and rab8D single mutants showed decreased levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B and 8D overexpression transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence and flowers of wild-type plants. In summary, RAB8A, 8B and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.

Funder

Ministry of Education, Taiwan

Ministry of Science and Technology, Taiwan

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3