Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan

Author:

Kim Sang-Jin12ORCID,Brandizzi Federica123

Affiliation:

1. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA

2. MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

3. Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA

Abstract

Abstract Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.

Funder

Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office x

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3