Prediction of survival risks with adjusted gene expression through risk-gene networks

Author:

Lee Minhyeok1,Han Sung Won2,Seok Junhee1

Affiliation:

1. School of Electrical Engineering, Korea University, Seoul, South Korea

2. School of Industrial Management Engineering, Korea University, Seoul, South Korea

Abstract

Abstract Motivation Network-based analysis of biomedical data has been extensively studied over the last decades. As a successful application, gene networks have been used to illustrate interactions among genes and explain the associated phenotypes. However, the gene network approaches have not been actively applied for survival analysis, which is one of the main interests of biomedical research. In addition, a few previous studies using gene networks for survival analysis construct networks mainly from prior knowledge, such as pathways, regulations and gene sets, while the performance considerably depends on the selection of prior knowledge. Results In this paper, we propose a data-driven construction method for survival risk-gene networks as well as a survival risk prediction method using the network structure. The proposed method constructs risk-gene networks with survival-associated genes using penalized regression. Then, gene expression indices are hierarchically adjusted through the networks to reduce the variance intrinsic in datasets. By illustrating risk-gene structure, the proposed method is expected to provide an intuition for the relationship between genes and survival risks. The risk-gene network is applied to a low grade glioma dataset, and produces a hypothesis of the relationship between genetic biomarkers of low and high grade glioma. Moreover, with multiple datasets, we demonstrate that the proposed method shows superior prediction performance compared to other conventional methods. Availability and implementation The R package of risk-gene networks is freely available in the web at http://cdal.korea.ac.kr/NetDA/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Research Foundation of Korea

Korea government

Korea University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3