An Ensemble Deep Learning Model with a Gene Attention Mechanism for Estimating the Prognosis of Low-Grade Glioma

Author:

Lee Minhyeok

Abstract

While estimating the prognosis of low-grade glioma (LGG) is a crucial problem, it has not been extensively studied to introduce recent improvements in deep learning to address the problem. The attention mechanism is one of the significant advances; however, it is still unclear how attention mechanisms are used in gene expression data to estimate prognosis because they were designed for convolutional layers and word embeddings. This paper proposes an attention mechanism called gene attention for gene expression data. Additionally, a deep learning model for prognosis estimation of LGG is proposed using gene attention. The proposed Gene Attention Ensemble NETwork (GAENET) outperformed other conventional methods, including survival support vector machine and random survival forest. When evaluated by C-Index, the GAENET exhibited an improvement of 7.2% compared to the second-best model. In addition, taking advantage of the gene attention mechanism, HILS1 was discovered as the most significant prognostic gene in terms of deep learning training. While HILS1 is known as a pseudogene, HILS1 is a biomarker estimating the prognosis of LGG and has demonstrated a possibility of regulating the expression of other prognostic genes.

Funder

Chung-Ang University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ctGAN: combined transformation of gene expression and survival data with generative adversarial network;Briefings in Bioinformatics;2024-05-23

2. A multi-omics analysis-based model to predict the prognosis of low-grade gliomas;Scientific Reports;2024-04-24

3. Enhanced Kidney Tumor Segmentation in CT Scans Using a Simplified UNETR with Organ Information;2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2024-02-19

4. OrgUNETR: Utilizing Organ Information and Squeeze and Excitation Block for Improved Tumor Segmentation;IEEE Access;2024

5. Feature Engineering with Microarray Gene Expression Techniques for Asymptomatic Disease Classification;2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3