A novel registration method for long-serial section images of EM with a serial split technique based on unsupervised optical flow network

Author:

Xin Tong12ORCID,Lv Yanan13,Chen Haoran12,Li Linlin3,Shen Lijun3,Shan Guangcun4,Chen Xi3,Han Hua25ORCID

Affiliation:

1. School of Artificial Intelligence, University of Chinese Academy of Sciences , Beijing 100190, China

2. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China

3. Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China

4. School of Instrumentation Science and Opto-electronics Engineering & Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University , Beijing 100083, China

5. School of Future Technology, University of Chinese Academy of Sciences , Beijing 100190, China

Abstract

Abstract Motivation The registration of serial section electron microscope images is a critical step in reconstructing biological tissue volumes, and it aims to eliminate complex nonlinear deformations from sectioning and replicate the correct neurite structure. However, due to the inherent properties of biological structures and the challenges posed by section preparation of biological tissues, achieving an accurate registration of serial sections remains a significant challenge. Conventional nonlinear registration techniques, which are effective in eliminating nonlinear deformation, can also eliminate the natural morphological variation of neurites across sections. Additionally, accumulation of registration errors alters the neurite structure. Results This article proposes a novel method for serial section registration that utilizes an unsupervised optical flow network to measure feature similarity rather than pixel similarity to eliminate nonlinear deformation and achieve pairwise registration between sections. The optical flow network is then employed to estimate and compensate for cumulative registration error, thereby allowing for the reconstruction of the structure of biological tissues. Based on the novel serial section registration method, a serial split technique is proposed for long-serial sections. Experimental results demonstrate that the state-of-the-art method proposed here effectively improves the spatial continuity of serial sections, leading to more accurate registration and improved reconstruction of the structure of biological tissues. Availability and implementation The source code and data are available at https://github.com/TongXin-CASIA/EFSR.

Funder

National Natural Science Foundation of China

Instrument Function Development Innovation Program of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3