Array tomography: trails to discovery

Author:

Micheva Kristina D.1,Burden Jemima J.2,Schifferer Martina34

Affiliation:

1. Department of Neurosurgery , Stanford University , Stanford , CA , 94305 , USA

2. LMCB , University College London , London , UK

3. Center for Neurodegenerative Diseases (DZNE) , Munich , Germany

4. Munich Cluster of Systems Neurology (SyNergy) , Munich , Germany

Abstract

Abstract Tissue slicing is at the core of many approaches to studying biological structures. Among the modern volume electron microscopy (vEM) methods, array tomography (AT) is based on serial ultramicrotomy, section collection onto solid support, imaging via light and/or scanning electron microscopy, and re-assembly of the serial images into a volume for analysis. While AT largely uses standard EM equipment, it provides several advantages, including long-term preservation of the sample and compatibility with multi-scale and multi-modal imaging. Furthermore, the collection of serial ultrathin sections improves axial resolution and provides access for molecular labeling, which is beneficial for light microscopy and immunolabeling, and facilitates correlation with EM. Despite these benefits, AT techniques are underrepresented in imaging facilities and labs, due to their perceived difficulty and lack of training opportunities. Here we point towards novel developments in serial sectioning and image analysis that facilitate the AT pipeline, and solutions to overcome constraints. Because no single vEM technique can serve all needs regarding field of view and resolution, we sketch a decision tree to aid researchers in navigating the plethora of options available. Lastly, we elaborate on the unexplored potential of AT approaches to add valuable insight in diverse biological fields.

Funder

Deutsche Forschungsgemeinschaft

Wellcome Trust

National Institutes of Health

MRC Laboratory for Molecular Cell Biology at University College London

Chan Zuckerberg Initiative

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3