HunFlair: an easy-to-use tool for state-of-the-art biomedical named entity recognition

Author:

Weber Leon12,Sänger Mario1,Münchmeyer Jannes13,Habibi Maryam1,Leser Ulf1,Akbik Alan1

Affiliation:

1. Computer Science Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany

2. Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany

3. Section Seismology, GFZ German Research Centre for Geosciences, Potsdam 14473, Germany

Abstract

Abstract Summary Named entity recognition (NER) is an important step in biomedical information extraction pipelines. Tools for NER should be easy to use, cover multiple entity types, be highly accurate and be robust toward variations in text genre and style. We present HunFlair, a NER tagger fulfilling these requirements. HunFlair is integrated into the widely used NLP framework Flair, recognizes five biomedical entity types, reaches or overcomes state-of-the-art performance on a wide set of evaluation corpora, and is trained in a cross-corpus setting to avoid corpus-specific bias. Technically, it uses a character-level language model pretrained on roughly 24 million biomedical abstracts and three million full texts. It outperforms other off-the-shelf biomedical NER tools with an average gain of 7.26 pp over the next best tool in a cross-corpus setting and achieves on-par results with state-of-the-art research prototypes in in-corpus experiments. HunFlair can be installed with a single command and is applied with only four lines of code. Furthermore, it is accompanied by harmonized versions of 23 biomedical NER corpora. Availability and implementation HunFlair ist freely available through the Flair NLP framework (https://github.com/flairNLP/flair) under an MIT license and is compatible with all major operating systems. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Helmholtz Einstein International Berlin Research School in Data Science

German Research Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference18 articles.

1. Concept annotation in the craft corpus;Bada;BMC Bioinformatics,2012

2. Enriching word vectors with subword information;Bojanowski;Trans. ACL,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3