Biomedical named entity recognition based on multi-cross attention feature fusion

Author:

Zheng Dequan,Han RongORCID,Yu Feng,Li Yannan

Abstract

Currently, in the field of biomedical named entity recognition, CharCNN (Character-level Convolutional Neural Networks) or CharRNN (Character-level Recurrent Neural Network) is typically used independently to extract character features. However, this approach does not consider the complementary capabilities between them and only concatenates word features, ignoring the feature information during the process of word integration. Based on this, this paper proposes a method of multi-cross attention feature fusion. First, DistilBioBERT and CharCNN and CharLSTM are used to perform cross-attention word-char (word features and character features) fusion separately. Then, the two feature vectors obtained from cross-attention fusion are fused again through cross-attention to obtain the final feature vector. Subsequently, a BiLSTM is introduced with a multi-head attention mechanism to enhance the model’s ability to focus on key information features and further improve model performance. Finally, the output layer is used to output the final result. Experimental results show that the proposed model achieves the best F1 values of 90.76%, 89.79%, 94.98%, 80.27% and 88.84% on NCBI-Disease, BC5CDR-Disease, BC5CDR-Chem, JNLPBA and BC2GM biomedical datasets respectively. This indicates that our model can capture richer semantic features and improve the ability to recognize entities.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. Multi-attention deep neural network fusing character and word embedding for clinical and biomedical concept extraction;S Fan;Inf Sci,2022

2. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003;B Boeckmann;Nucleic Acids Res,2003

3. GenBank;EW Sayers;Nucleic Acids Research,2019

4. Improving biomedical information retrieval with neural retrievers;M Luo;Proceedings of the AAAI Conference on Artificial Intelligence,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3