ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning

Author:

Wei Lesong1ORCID,Ye Xiucai1,Sakurai Tetsuya1,Mu Zengchao2,Wei Leyi3

Affiliation:

1. Department of Computer Science, University of Tsukuba , Tsukuba 3058577, Japan

2. School of Mathematics and Statistics, Shandong University , Weihai, China

3. School of Software, Shandong University , Jinan, China

Abstract

Abstract Motivation Recently, peptides have emerged as a promising class of pharmaceuticals for various diseases treatment poised between traditional small molecule drugs and therapeutic proteins. However, one of the key bottlenecks preventing them from therapeutic peptides is their toxicity toward human cells, and few available algorithms for predicting toxicity are specially designed for short-length peptides. Results We present ToxIBTL, a novel deep learning framework by utilizing the information bottleneck principle and transfer learning to predict the toxicity of peptides as well as proteins. Specifically, we use evolutionary information and physicochemical properties of peptide sequences and integrate the information bottleneck principle into a feature representation learning scheme, by which relevant information is retained and the redundant information is minimized in the obtained features. Moreover, transfer learning is introduced to transfer the common knowledge contained in proteins to peptides, which aims to improve the feature representation capability. Extensive experimental results demonstrate that ToxIBTL not only achieves a higher prediction performance than state-of-the-art methods on the peptide dataset, but also has a competitive performance on the protein dataset. Furthermore, a user-friendly online web server is established as the implementation of the proposed ToxIBTL. Availability and implementation The proposed ToxIBTL and data can be freely accessible at http://server.wei-group.net/ToxIBTL. Our source code is available at https://github.com/WLYLab/ToxIBTL. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

New Energy and Industrial Technology Development Organization (NEDO

JST COI-NEXT

Grants-in-Aid for Scientific Research under

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3