DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features

Author:

Chu Yanyi1,Kaushik Aman Chandra2,Wang Xiangeng1,Wang Wei3,Zhang Yufang1,Shan Xiaoqi4,Salahub Dennis Russell5,Xiong Yi1,Wei Dong-Qing1

Affiliation:

1. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University

2. School of Medicine, Jiangnan University, Wuxi, China

3. Mathematical Sciences, Shanghai Jiao Tong University

4. School of Life Sciences and Biotechnology

5. Department of Chemistry, University of Calgary, Fellow Royal Society of Canada

Abstract

Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3