MFTP-Tool: A Wide & Deep Learning Framework for Multi-Functional Therapeutic Peptides Prediction

Author:

Lv Yang12,Liu Ting13,Ma YuChen2,Lyu Hongqiang4,Liu Ze15

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University/ North West Agriculture and Forestry University, Yangling, 712100, Shaanxi, China

2. College of Mechanical and Electronic Engineering, Northwest A&F University/ North West Agriculture and Forestry University, Yangling, 712100, Shaanxi, China

3. Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, 999077, Hong Kong, China

4. School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi 710049, China

5. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University/ North West Agriculture and Forestry University, Yangling, 712100, Shaanxi, China

Abstract

Background: The identification and functional prediction of Multifunctional Therapeutic Peptides (MFTP) play a pivotal role in drug discovery, particularly for conditions such as inflammation and hyperglycemia. Current computational methods exhibit limitations in their ability to accurately predict the multifunctionality of these peptides. Methods: We propose a novel Wide and Deep Learning Framework that integrates both deep learning and machine learning approaches. The deep learning segment processes word vectors using a neural network model, while the wide segment utilizes the physicochemical properties of peptides in a random forest-based model. This hybrid approach aims to enhance the accuracy of MFTP function prediction. Results: Our framework outperformed the existing PrMFTP predictor in terms of precision, coverage, accuracy, and absolute true values. The evaluation was conducted on both training and independent testing datasets, demonstrating the robustness and generalizability of our model. Conclusion: The proposed Wide & Deep Learning Framework offers a significant advancement in the computational prediction of MFTP functions. The availability of our model through a userfriendly web interface at MFTP-Tool.m6aminer.cn provides a valuable tool for researchers in the field of therapeutic peptide-based drug discovery, potentially accelerating the development of new treatments.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3