Expression-based prediction of human essential genes and candidate lncRNAs in cancer cells

Author:

Kuang Shuzhen12,Wei Yanzhang2,Wang Liangjiang13ORCID

Affiliation:

1. Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA

2. Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

3. Center for Human Genetics, Clemson University, Clemson, SC 29634, USA

Abstract

Abstract Motivation Essential genes are required for the reproductive success at either cellular or organismal level. The identification of essential genes is important for understanding the core biological processes and identifying effective therapeutic drug targets. However, experimental identification of essential genes is costly, time consuming and labor intensive. Although several machine learning models have been developed to predict essential genes, these models are not readily applicable to lncRNAs. Moreover, the currently available models cannot be used to predict essential genes in a specific cancer type. Results In this study, we have developed a new machine learning approach, XGEP (eXpression-based Gene Essentiality Prediction), to predict essential genes and candidate lncRNAs in cancer cells. The novelty of XGEP lies in the utilization of relevant features derived from the TCGA transcriptome dataset through collaborative embedding. When evaluated on the pan-cancer dataset, XGEP was able to accurately predict human essential genes and achieve significantly higher performance than previous models. Notably, several candidate lncRNAs selected by XGEP are reported to promote cell proliferation and inhibit cell apoptosis. Moreover, XGEP also demonstrated superior performance on cancer-type-specific datasets to identify essential genes. The comprehensive lists of candidate essential genes in specific cancer types may be used to guide experimental characterization and facilitate the discovery of drug targets for cancer therapy. Availability and implementation The source code and datasets used in this study are freely available at https://github.com/BioDataLearning/XGEP. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference71 articles.

1. Targeting DNA damage response as a strategy to treat HPV infections;Banerjee;Int. J. Mol. Sci,2019

2. Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms;Bergstra,2013

3. Gene essentiality and synthetic lethality in haploid human cells;Blomen;Science,2015

4. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells;Burke;Oncogene,2001

5. XGBoost

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3