Cloud bursting galaxy: federated identity and access management

Author:

Jalili Vahid1ORCID,Afgan Enis2,Taylor James2,Goecks Jeremy1ORCID

Affiliation:

1. Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA

2. Department of Biology, Johns Hopkins University, Baltimore, MD, USA

Abstract

Abstract Motivation Large biomedical datasets, such as those from genomics and imaging, are increasingly being stored on commercial and institutional cloud computing platforms. This is because cloud-scale computing resources, from robust backup to high-speed data transfer to scalable compute and storage, are needed to make these large datasets usable. However, one challenge for large-scale biomedical data on the cloud is providing secure access, especially when datasets are distributed across platforms. While there are open Web protocols for secure authentication and authorization, these protocols are not in wide use in bioinformatics and are difficult to use for even technologically sophisticated users. Results We have developed a generic and extensible approach for securely accessing biomedical datasets distributed across cloud computing platforms. Our approach combines OpenID Connect and OAuth2, best-practice Web protocols for authentication and authorization, together with Galaxy (https://galaxyproject.org), a web-based computational workbench used by thousands of scientists across the world. With our enhanced version of Galaxy, users can access and analyze data distributed across multiple cloud computing providers without any special knowledge of access/authorization protocols. Our approach does not require users to share permanent credentials (e.g. username, password, API key), instead relying on automatically generated temporary tokens that refresh as needed. Our approach is generalizable to most identity providers and cloud computing platforms. To the best of our knowledge, Galaxy is the only computational workbench where users can access biomedical datasets across multiple cloud computing platforms using best-practice Web security approaches and thereby minimize risks of unauthorized data access and credential use. Availability and implementation Freely available for academic and commercial use under the open-source Academic Free License (https://opensource.org/licenses/AFL-3.0) from the following Github repositories: https://github.com/galaxyproject/galaxy and https://github.com/galaxyproject/cloudauthz.

Funder

National Institutes of Health

National Science Foundation

Oregon Health and Science University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3