Predicting mechanism of action of cellular perturbations with pathway activity signatures

Author:

Ren Yan1,Sivaganesan Siva2,Clark Nicholas A1,Zhang Lixia1,Biesiada Jacek1,Niu Wen1,Plas David R3,Medvedovic Mario1ORCID

Affiliation:

1. Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA

2. Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

3. Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA

Abstract

Abstract Motivation Misregulation of signaling pathway activity is etiologic for many human diseases, and modulating activity of signaling pathways is often the preferred therapeutic strategy. Understanding the mechanism of action (MOA) of bioactive chemicals in terms of targeted signaling pathways is the essential first step in evaluating their therapeutic potential. Changes in signaling pathway activity are often not reflected in changes in expression of pathway genes which makes MOA inferences from transcriptional signatures (TSeses) a difficult problem. Results We developed a new computational method for implicating pathway targets of bioactive chemicals and other cellular perturbations by integrated analysis of pathway network topology, the Library of Integrated Network-based Cellular Signature TSes of genetic perturbations of pathway genes and the TS of the perturbation. Our methodology accurately predicts signaling pathways targeted by the perturbation when current pathway analysis approaches utilizing only the TS of the perturbation fail. Availability and implementation Open source R package paslincs is available at https://github.com/uc-bd2k/paslincs. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3