hopsy — a methods marketplace for convex polytope sampling in Python

Author:

Paul Richard D12ORCID,Jadebeck Johann F13ORCID,Stratmann Anton13ORCID,Wiechert Wolfgang13ORCID,Nöh Katharina1ORCID

Affiliation:

1. Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich , 52428 Jülich, Germany

2. Institute of Advanced Simulations, IAS-8: Data Analytics and Machine Learning, Forschungszentrum Jülich , 52428 Jülich, Germany

3. Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University , 52074 Aachen, Germany

Abstract

Abstract Summary Effective collaboration between developers of Bayesian inference methods and users is key to advance our quantitative understanding of biosystems. We here present hopsy, a versatile open-source platform designed to provide convenient access to powerful Markov chain Monte Carlo sampling algorithms tailored to models defined on convex polytopes (CP). Based on the high-performance C++ sampling library HOPS, hopsy inherits its strengths and extends its functionalities with the accessibility of the Python programming language. A versatile plugin-mechanism enables seamless integration with domain-specific models, providing method developers with a framework for testing, benchmarking, and distributing CP samplers to approach real-world inference tasks. We showcase hopsy by solving common and newly composed domain-specific sampling problems, highlighting important design choices. By likening hopsy to a marketplace, we emphasize its role in bringing together users and developers, where users get access to state-of-the-art methods, and developers contribute their own innovative solutions for challenging domain-specific inference problems. Availability and implementation Sources, documentation and a continuously updated list of sampling algorithms are available at https://jugit.fz-juelich.de/IBG-1/ModSim/hopsy, with Linux, Windows and MacOS binaries at https://pypi.org/project/hopsy/.

Funder

Helmholtz School for Data Science in Life, Earth and Energy

Helmholtz Association of German Research Centres

Publisher

Oxford University Press (OUP)

Reference39 articles.

1. PyMC: a modern and comprehensive probabilistic programming framework in Python;PeerJ Comput Sci,2023

2. Estimating latent processes on a network from indirect measurements;Airoldi;JASA,2013

3. Hit-and-Run algorithms for generating multivariate distributions;Bélisle;Math OR,1993

4. Stan: a probabilistic programming language;Carpenter;J Stat Softw,2017

5. Geometric algorithms for sampling the flux space of metabolic networks,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Approximate Characterization of Single-Cell Heterogeneity in Microbial Growth;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3